Home » » Beyond the limits

Beyond the limits


The law of agency is an area of commercial law dealing with a set of contractual, quasi-contractualШУУД ҮЗЭХ and
In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input. Formal definitions, first devised in the early 19th century, are given below. Informally, a function f assigns an output f(x) to every input x. We say the function has a limit L at an input p: this means f(x) gets closer and closer to L as x moves closer and closer to p. More specifically, when f is applied to any input sufficiently close to p, the output value is forced arbitrarily close to L. On the other hand, if some inputs very close to p are taken to outputs that stay a fixed distance apart, we say the limit does not exist. The notion of a limit has many applications in modern calculus. In particular, the many definitions of continuity employ the limit: roughly, a function is continuous if all of its limits agree with the values of the function. It also appears in the definition of the derivative: in the calculus of one variable, this is the limiting value of the slope of secant lines to the graph of a function. Although implicit in the development of calculus of the 17th and 18th centuries, the modern idea of the limit of a function goes back to Bolzano who, in 1817, introduced the basics of the epsilon-delta technique to define continuous functions. However, his work was not known during his lifetime (Felscher 2000). Cauchy discussed limits in his Cours d'analyse (1821) and gave essentially the modern definition, but this is not often recognized because he only gave a verbal definition (Grabiner 1983). Weierstrass first introduced the epsilon-delta definition of limit in the form it is usually written today. He also introduced the notations lim and lim
Share this article :

Post a Comment